lunes, 15 de febrero de 2010

superconductividad

Se denomina superconductividad a la capacidad intrínseca que poseen ciertos materiales para conducir corriente eléctrica sin resistencia y pérdida de energía nulas en determinadas condiciones.La superconductividad ocurre en una gran variedad de materiales, incluyendo elementos simples como el estaño y el aluminio, diversas aleaciones metálicas y algunos semiconductores fuertemente dopados. La superconductividad no ocurre en metales nobles como el oro y la plata, ni en la mayoría de los metales ferromagnéticos.
        
El concepto básico sobre el que se sustenta la superconductividad es que los electrones, que normalmente se repelen entre sí debido a que tienen cargas iguales, forman parejas para conducir sin resistencia la corriente eléctrica. Los superconductores metálicos convencionales hacen esto a temperaturas cercanas al cero absoluto (0 grados Kelvin ó 273 grados Celsius bajo cero), requiriendo de costosos sistemas de enfriamiento. Más recientemente, los científicos han descubierto materiales que se vuelven superconductores a temperaturas superiores, dando ello esperanzas sobre la posibilidad futura de crear dispositivos que operen a temperatura ambiente.

   

El descubrimiento

Ya en el siglo XIX se llevaron a cabo diversos experimentos para medir la resistencia eléctrica a bajas temperaturas, siendo James Dewar el primer pionero en este campo.
Sin embargo, la superconductividad como tal no se descubriría hasta 1911, año en que el físico holandés Heike Kamerlingh Onnes observó que la resistencia eléctrica del mercurio desaparecía bruscamente al enfriarse a 4 K (-269 °C), cuando lo que se esperaba era que disminuyera gradualmente hasta el cero absoluto. Gracias a sus descubrimientos, principalmente por su método para lograr la producción de helio líquido, recibiría dos años más tarde el premio Nobel de física. Durante los primeros años el fenómeno fue conocido como supraconductividad.
En 1913 se descubre que un campo magnético suficientemente grande también destruye el estado superconductor, descubriéndose tres años después la existencia de una corriente eléctrica crítica.
Puesto que se trata de un fenómeno esencialmente cuántico, no se hicieron grandes avances en la comprensión de la superconductividad, puesto que la comprensión y las herramientas matemáticas de que disponían los físicos de la época no fueron suficientes para afrontar el problema hasta los años cincuenta. Por ello, la investigación fue hasta entonces meramente fenomenológica, como por ejemplo el descubrimiento del efecto Meissner en 1933 y su primera explicación mediante el desarrollo de la ecuación de London dos años más tarde por parte de los hermanos Fritz y Heinz London.

Las teorías principales

Los mayores avances en la comprensión de la superconductividad tuvieron lugar en los años cincuenta: en 1950 es publicada la teoría Ginzburg-Landau, y en 1957 vería la luz la teoría BCS.
La teoría BCS fue desarrollada por Bardeen, Cooper y Schrieffer (de sus iniciales surge el nombre BCS), gracias a lo cual los tres recibirían el premio Nobel de física en 1972. Esta teoría se pudo desarrollar gracias a dos pistas fundamentales ofrecidas por físicos experimentales a principios de los años cincuenta:
  • el descubrimiento del efecto isotópico en 1950 (que vinculó la superconductividad con la red cristalina),
  • y el descubrimiento de Lars Onsager en 1953 de que los portadores de carga son en realidad parejas de electrones llamados pares de Cooper (resultado de experimentos sobre la cuantización flujo magnético que pasa a través de un anillo superconductor).
La teoría Ginzburg-Landau es una generalización de la teoría de London desarrollada por Vitaly Ginzburg y Lev Landau en 1950. Si bien esta teoría precede siete años a la teoría BCS, los físicos de Europa Occidental y Estados Unidos le prestaron poca atención por su carácter más fenomenológico que teórico, unido a la incomunicación de aquellos años entre ambos lados del Telón de Acero. Esta situación cambió en 1959, año en que Lev Gor'kov demostró que se podía derivar rigurosamente a partir de la teoría microscópica en un artículo que también publicó en inglés. En 1962 Brian David Josephson predijo que podría haber corriente eléctrica entre dos conductores incluso si hubiera una pequeña separación entre estos, debido al efecto túnel. Un año más tarde Anderson y Rowell lo confirmaron experimentalmente. El efecto sería conocido como efecto Josephson, y está entre los fenómenos más importantes de los superconductores, teniendo gran variedad de aplicaciones, desde la magnetoencefalografía hasta la predicción de terremotos.

Obtención de materiales superconductores

Debido a las bajas temperaturas que se necesitan para conseguir la superconductividad, los materiales más comunes se suelen enfriar con helio líquido (el nitrógeno líquido sólo es útil cuando se manejan superconductores de alta temperatura). El montaje necesario es complejo y costoso, utilizándose en muy contadas aplicaciones como, por ejemplo, la construcción de electroimanes muy potentes para resonancia magnética nuclear. Sin embargo, en los años 80 se descubrieron los superconductores de alta temperatura, que muestran la transición de fase a temperaturas superiores a la transición líquido-vapor del nitrógeno líquido. Esto ha abaratado mucho los costos en el estudio de estos materiales y abierto la puerta a la existencia de materiales superconductores a temperatura ambiente, lo que supondría una revolución en la industria del siglo XXI. La mayor desventaja de estos materiales es su composición cerámica, lo que lo hace poco apropiado para fabricar cables mediante deformación plástica, el uso más obvio de este tipo de materiales. Sin embargo se han desarrollado técnicas nuevas para la fabricación de cintas como IBAD (deposición asistida mediante haz de iones). Mediante esta técnica se han logrado cables de longitudes mayores de 1 kilómetro. Teoría BCS
La teoría microscópica más aceptada para explicar los superconductores es la Teoría BCS, presentada en 1957. La superconductividad se puede explicar como una aplicación del Condensado de Bose-Einstein. Sin embargo, los electrones son fermiones, por lo que no se les puede aplicar esta teoría directamente. La idea en la que se basa la teoría BCS es que los electrones se aparean formando un par de fermiones que se comporta como un bosón. Esta pareja se denomina par de Cooper y su enlace está justificado en las interacciones de los electrones entre sí mediada por la estructura cristalina del material.

Teoría Ginzburg-Landau

Otro enfoque diferente es mediante la Teoría Ginzburg-Landau, que se centra más en las propiedades macroscópicas que en la teoría microscópica, basándose en la ruptura de simetrías en la transición de fase. Esta teoría predice mucho mejor las propiedades de sustancias inhomogéneas, ya que la teoría BCS es aplicable únicamente si la sustancia es homogénea, es decir, si la energía de la banda prohibida es constante en el espacio. Cuando la sustancia es inhomogénea, el problema puede ser intratable desde el punto de vista microscópico. La teoría se fundamenta en un cálculo variacional en el que se trata de minimizar la energía libre de Helmholz con respecto a la densidad de electrones que se encuentran en el estado superconductor. Las condiciones para aplicar la teoría son
  • las temperaturas manejadas tienen que estar cerca de la temperatura crítica, dado que se fundamenta en un desarrollo en serie de Taylor alrededor de Tc.
  • La pseudofunción de onda Ψ, así como el potencial vector \vec{A}, tienen que variar suavemente.
Esta teoría predice dos longitudes características:
  • longitud de penetración: es la distancia que penetra el campo magnético en el material superconductor
  • longitud de coherencia: es el tamaño aproximado del par de Cooper
  Aplicaciones Los imanes superconductores son algunos de los electroimanes más poderosos conocidos. Se utilizan en los trenes maglev, en máquinas para la resonancia magnética nuclear en hospitales y en el direccionamiento del haz de un acelerador de partículas. También pueden utilizarse para la separación magnética, en donde partículas magnéticas débiles se extraen de un fondo de partículas menos o no magnéticas, como en las industrias de pigmentos. Los superconductores se han utilizado también para hacer circuitos digitales y filtros de radiofrecuencia y microondas para estaciones base de telefonía móvil. Los superconductores se usan para construir uniones Josephson, que son los bloques de construcción de los SQUIDs (dispositivos superconductores de interferencia cuántica), los magnetómetros conocidos más sensibles. Una serie de dispositivos Josephson se han utilizado para definir el voltio en el sistema internacional (SI). En función de la modalidad de funcionamiento, una unión Josephson se puede utilizar como detector de fotones o como mezclador. El gran cambio en la resistencia a la transición del estado normal al estado superconductor se utiliza para construir termómetros en detectores de fotones criogénicos. Están apareciendo nuevos mercados donde la relativa eficiencia, el tamaño y el peso de los dispositivos basados en los superconductores de alta temperatura son superiores a los gastos adicionales que ellos suponen. Aplicaciones futuras prometedoras incluyen transformadores de alto rendimiento, dispositivos de almacenamiento de energía, la transmisión de energía eléctrica, motores eléctricos (por ejemplo, para la propulsión de vehículos, como en vactrains o trenes maglev) y dispositivos de levitación magnética. Sin embargo la superconductividad es sensible a los campos magnéticos en movimiento de modo que las aplicaciones que usan corriente alterna (por ejemplo, los transformadores) serán más difícil de elaborar que las que dependen de corriente continua.  
    


PAGINAS DE REFERENCIA:
http://es.wikipedia.org/wiki/Superconductividad
http://images.google.co.ve/images?gbv=2&hl=es&q=imanes+superconductores&sa=N&start=36&ndsp=18
bibliotecadigital.ilce.edu.mx/.../htm/sec_12.htm

PUBLICADO POR : ACUÑA REY ANDRES EDUARDO
ELECTRONICA DE ESTADO SOLIDO

1 comentario: