El método de Hartree-Fock (HF) es una forma aproximada de las ecuaciones de mecánica cuántica para fermiones, utilizada en física y química (donde también se conoce como método de campo auto consistente). Esto se debe a que sus ecuaciones, basadas en orbitales de una partícula, son más accesibles computacionalmente que los métodos basados en funciones de onda de muchas partículas.
La aproximación de Hartree-Fock es el equivalente, en física computacional, a la aproximación de orbitales moleculares, de enorme utilidad conceptual para los físicos. Este esquema de cálculo es un procedimiento iterativo para calcular la mejor solución monodeterminantal a la ecuación de Schrödinger independiente del tiempo, para moléculas aisladas, tanto en su estado fundamental como en estado excitados. La interacción de un único electrón en un problema de muchos cuerpos con el resto de los electrones del sistema se aproxima promediándolo como una interacción entre dos cuerpos (tras aplicar la aproximación de Born-Oppenheimer). De esta forma, se puede obtener una aproximación a la energía total de la molécula. Como consecuencia, calcula la energía de intercambio de forma exacta, pero no tiene en absoluto en cuenta el efecto de la correlación electrónica.
La base del método de Hartree-Fock es suponer que la función de onda de muchos cuerpos es un determinante de Slater de orbitales de una partícula. Esto garantiza la antisimetría de la función de onda y considera la energía de intercambio. Sin embargo, no considera efectos de correlación que no necesariamente son despreciables. A partir de esta suposición, se puede aplicar el principio variacional de mecánica cuántica, se encuentra una ecuación de autovalores para los orbitales de una partícula.
El punto de partida para el cálculo Hartree-Fock es un conjunto de orbitales aproximados. Para un cálculo atómico, estos son típicamente los orbitales de un átomo hidrogenoide (un átomo con una carga nuclear cualquiera pero con un sólo electrón). Para cálculos moleculares o cristalinos, las funciones de ondas iníciales son típicamente una combinación lineal de orbitales atómicos. Esto da una colección de orbitales monoelectrónicos, que por la naturaleza fermiónica de los electrones, debe ser antisimétrica, lo que se consigue mediante el uso del determinante de Slater. El procedimiento básico fue diseñado por Hartree, y Fock añadió el antisimetrizado.
Una vez se ha construido una función de ondas inicial, se elige un electrón. Se resume el efecto de todos los demás electrones, que se usa para generar un potencial. (Por este motivo, se llama a veces a este método un procedimiento de campo promedio). Esto da un electrón en un campo definido, para el que se puede resolver la ecuación de Schrödinger, dando una función de ondas ligeramente diferente para este electrón. Entonces, el procedimiento se repite para cada uno de los otros electrones, hasta completar un paso del procedimiento. De esta forma, con la nueva distribución electrónica se tiene un nuevo potencial eléctrico. El procedimiento se repite, hasta alcanzar la convergencia (hasta que el cambio entre un paso y el siguiente es lo suficientemente pequeño
Las aplicaciones del método de Hartree-Fock Se usa a menudo en el mismo área de cálculos que la Teoría del Funcional de la Densidad, que puede dar soluciones aproximadas para las energías de canje y de correlación. De hecho, es común el uso de cálculos que son híbridos de los dos métodos. Adicionalmente, los cálculos a nivel Hartree-Fock se usan como punto de partida para métodos más sofisticados, como la teoría perturbacional de muchos cuerpos, o cálculos cuánticos de Monte-Carlo.
La inestabilidad numérica es un problema de este método, y hay varias vías para combatirla. Una de las más básicas y más aplicadas es la mezcla-F. Con la mezcla-F, no se usa directamente la función de ondas de un electrón conforme se ha obtenido. En lugar de esto, se usa una combinación lineal de la función obtenida con las previas, por ejemplo con la inmediatamente previa. Otro truco, empleado por Hartree, es aumentar la carga nuclear para comprimir a los electrones; tras la estabilización del sistema, se reduce gradualmente la carga hasta llegar a la carga correcta.
Desarrollos más allá del campo autoconsistente o SCF son el CASSCF y la interacción de configuraciones. Los cálculos de este tipo son relativamente económicos frente a otros de la química cuántica. De esta forma, en ordenadores personales es posible resolver moléculas pequeñas en muy poco tiempo. Las moléculas más grandes, o los desarrollos más sofisticados, para obtener resultados más exactos, siguen realizándose en superordenadores. Existen múltiples paquetes informáticos que implementan el método de campo autoconsistente, entre los que pueden destacarse Gaussian, MOLPRO y MOLCAS.
Referencias
No hay comentarios:
Publicar un comentario