lunes, 15 de febrero de 2010

Propiedades de transporte. Metales semiconductores y aislantes. Enmanuel angel EES

Propiedades de transporte
Al separar dos átomos (de carga n) considerablemente no interactúan entre sí y sus niveles de energía se pueden considerar casi nulos, o sea, como aislados pero al juntar estos dos átomos, sus órbitas exteriores empezaran a traslaparse y al llegar a una interacción bastante intensa forman dos niveles diferentes (n). Al realizar esto con un gran número de átomos ocurre algo similar. Conforme los átomos se acercan unos a otros, los diversos niveles de energía atómicos empiezan a dividirse. A esta división es a lo que podemos llamar una Banda, y el ancho de esta banda de energía que surge de un nivel de energía atómica particular es independiente del número de átomos en un sólido. El ancho de una banda de energía depende sólo de las interacciones de vecinos cercanos, en tanto que el número de niveles dentro de la banda depende del número total de partículas interactuando.
En otras palabras seria lo mismo decir que los electrones pueden ocupar un número discreto de niveles de energía, pueden tener solamente aquellas energías que caen dentro de las bandas permitidas. La banda donde se mueven normalmente los electrones de valencia se conoce como banda de valencia, y los electrones que se mueven libremente y conducen la corriente se mueven en la banda de conducción.

Un semiconductor es una sustancia que se comporta como conductor o como aislante dependiendo de la temperatura del ambiente en el que se encuentre.
Semiconductor intrínseco Un cristal de silicio forma una estructura tetraédrica similar a la del carbono mediante enlaces covalentes entre sus átomos, en la figura representados en el plano por simplicidad. Cuando el cristal se encuentra a temperatura ambiente, algunos electrones pueden, absorbiendo la energía necesaria, saltar a la banda de conducción, dejando el correspondiente hueco en la banda de valencia (1). Las energías requeridas, a temperatura ambiente son de 1,12 y 0,67 eV para el silicio y el germanio respectivamente.
Obviamente el proceso inverso también se produce, de modo que los electrones pueden caer desde el estado energético correspondiente a la banda de conducción, a un hueco en la banda de valencia liberando energía. A este fenómeno, se le denomina recombinación. Sucede que, a una determinada temperatura, las velocidades de creación de pares e-h, y de recombinación se igualan, de modo que la concentración global de electrones y huecos permanece invariable. Siendo "n" la concentración de electrones (cargas negativas) y "p" la concentración de huecos (cargas positivas), se cumple que:
ni = n = p
siendo ni la concentración intrínseca del semiconductor, función exclusiva de la temperatura. Si se somete el cristal a una diferencia de tensión, se producen dos corrientes eléctricas. Por un lado la debida al movimiento de los electrones libres de la banda de conducción, y por otro, la debida al desplazamiento de los electrones en la banda de valencia, que tenderán a saltar a los huecos próximos (2), originando una corriente de huecos en la dirección contraria al campo eléctrico cuya velocidad y magnitud es muy inferior a la de la banda de conducción.
Semiconductor extrínseco Si a un semiconductor intrínseco, como el anterior, se le añade un pequeño porcentaje de impurezas, es decir, elementos trivalentes o pentavalentes, el semiconductor se denomina extrínseco, y se dice que está dopado. Evidentemente, las impurezas deberán formar parte de la estructura cristalina sustituyendo al correspondiente átomo de silicio.
Aislantes.
La magnitud de la banda prohibida es muy grande ( 6 eV ), de forma que todos los electrones del cristal se encuentran en la banda de valencia incluso a altas temperaturas por lo que, al no existir portadores de carga libres, la conductividad eléctrica del cristal es nula.
Un ejemplo es el diamante
La superconductividad ocurre en una gran variedad de materiales, incluyendo elementos simples como el estaño y el aluminio, diversas aleaciones metálicas y algunos semiconductores fuertemente dopados. La superconductividad no ocurre en metales nobles como el oro y la plata, ni en la mayoría de los metales ferromagnéticos.
¿Cuál es la diferencia existente entre conductor,semiconductor y aislante?
Es sencillo, los conductores son todos aquellos que poseen menos de 4 electrones en la capa de valencia, el semiconductor es aquel que posee 4 electrones en la capa de valencia y el aislante es el que posee mas de 4 electrones en la capa de valencia.

No hay comentarios:

Publicar un comentario