Propiedades transporte metal en un semiconductor
Propiedades de transporteAl separar dos átomos (de carga n) considerablemente no interactúan entre sí y sus niveles de energía se pueden considerar casi nulos, o sea, como aislados pero al juntar estos dos átomos, sus órbitas exteriores empezaran a traslaparse y al llegar a una interacción bastante intensa forman dos niveles diferentes (n). Al realizar esto con un gran número de átomos ocurre algo similar. Conforme los átomos se acercan unos a otros, los diversos niveles de energía atómicos empiezan a dividirse. A esta división es a lo que podemos llamar una Banda, y el ancho de esta banda de energía que surge de un nivel de energía atómica particular es independiente del número de átomos en un sólido. El ancho de una banda de energía depende sólo de las interacciones de vecinos cercanos, en tanto que el número de niveles dentro de la banda depende del número total de partículas interactuando.
En otras palabras seria lo mismo decir que los electrones pueden ocupar un número discreto de niveles de energía, pueden tener solamente aquellas energías que caen dentro de las bandas permitidas. La banda donde se mueven normalmente los electrones de valencia se conoce como banda de valencia, y los electrones que se mueven libremente y conducen la corriente se mueven en la banda de conducción.
Un semiconductor es una sustancia que se comporta como conductor o como aislante dependiendo de la temperatura del ambiente en el que se encuentre.
Semiconductor intrínseco Un cristal de silicio forma una estructura tetraédrica similar a la del carbono mediante enlaces covalentes entre sus átomos, en la figura representados en el plano por simplicidad. Cuando el cristal se encuentra a temperatura ambiente, algunos electrones pueden, absorbiendo la energía necesaria, saltar a la banda de conducción, dejando el correspondiente hueco en la banda de valencia (1). Las energías requeridas, a temperatura ambiente son de 1,12 y 0,67 eV para el silicio y el germanio respectivamente.
Obviamente el proceso inverso también se produce, de modo que los electrones pueden caer desde el estado energético correspondiente a la banda de conducción, a un hueco en la banda de valencia liberando energía. A este fenómeno, se le denomina recombinación. Sucede que, a una determinada temperatura, las velocidades de creación de pares e-h, y de recombinación se igualan, de modo que la concentración global de electrones y huecos permanece invariable. Siendo "n" la concentración de electrones (cargas negativas) y "p" la concentración de huecos (cargas positivas), se cumple que:
ni = n = p
siendo ni la concentración intrínseca del semiconductor, función exclusiva de la temperatura. Si se somete el cristal a una diferencia de tensión, se producen dos corrientes eléctricas. Por un lado la debida al movimiento de los electrones libres de la banda de conducción, y por otro, la debida al desplazamiento de los electrones en la banda de valencia, que tenderán a saltar a los huecos próximos (2), originando una corriente de huecos en la dirección contraria al campo eléctrico cuya velocidad y magnitud es muy inferior a la de la banda de conducción.
Semiconductor extrínseco Si a un semiconductor intrínseco, como el anterior, se le añade un pequeño porcentaje de impurezas, es decir, elementos trivalentes o pentavalentes, el semiconductor se denomina extrínseco, y se dice que está dopado. Evidentemente, las impurezas deberán formar parte de la estructura cristalina sustituyendo al correspondiente átomo de silicio.
Aislantes.
La magnitud de la banda prohibida es muy grande ( 6 eV ), de forma que todos los electrones del cristal se encuentran en la banda de valencia incluso a altas temperaturas por lo que, al no existir portadores de carga libres, la conductividad eléctrica del cristal es nula.
Un ejemplo es el diamante
La superconductividad ocurre en una gran variedad de materiales, incluyendo elementos simples como el estaño y el aluminio, diversas aleaciones metálicas y algunos semiconductores fuertemente dopados. La superconductividad no ocurre en metales nobles como el oro y la plata, ni en la mayoría de los metales ferromagnéticos.
La teoría de Drude de los metales Esta relacionado con las propiedades físicas de los metales, por lo que comenzaremos hablando un poco sobre estos mismos para así poder comprender mejor lo que es el mar de Drude.
La ciencia de materiales define un metal como un material en el que existe un traslape entre la banda de valencia y la banda de conducción en su estructura electrónica (enlace metálico). Esto le da la capacidad de conducir fácilmente calor y electricidad, y generalmente la capacidad de reflejar la luz, lo cual le da su peculiar brillo.
Los metales tienen ciertas propiedades físicas características: a excepción del mercurio son sólidos a condiciones ambientales normales, suelen ser opacos y brillantes, tener alta densidad, ser dúctiles y maleables, tener un punto de fusión alto, ser duros, y ser buenos conductores del calor y electricidad. Estas propiedades se deben al hecho de que los electrones exteriores están ligados sólo ligeramente a los átomos, formando una especie de mar (también conocido como mar de Drude), que se conoce como Enlace metálico.
Mediante la teoría del mar de Drude podemos explicar por que los metales son tan buenos conductores del calor y la electricidad, es necesario comprender la naturaleza del enlace entre sus átomos.
Un primer intento para explicar el enlace metálico consistió en considerar un modelo en el cual los electrones de valencia de cada metal se podían mover libremente en la red cristalina (teoría de Drude-Lorentz); de esta forma, el retículo metálico se considera constituido por un conjunto de iones positivos (los núcleos rodeados por su capa de electrones) y electrones (los de valencia), en lugar de estar formados por átomos neutros.
En definitiva un elemento metálico se considera que esta constituido por cationes metálicos distribuidos regularmente e inmersos en un "mar de electrones" de valencia deslocalizados, actuando como un aglutinante electrostática que mantiene unidos a los cationes metálicos.
El modelo de mar de electrones permite una explicación cualitativa sencilla de la conductividad eléctrica y térmica de los metales. Dado que los electrones son móviles, se puede trasladar desde el electrodo negativo al positivo cuando el metal se somete al efecto de un potencial eléctrico. Los electrones móviles también pueden conducir el calor transportando la energía cinética de una parte a otra del cristal. El carácter dúctil y maleable de los metales está permitido por el hecho de que el enlace deslocalizado se extiende en todas las direcciones; es decir, no está limitado a una orientación determinada, como sucede en el caso de los sólidos de redes covalentes.
Cuando un cristal metálico se deforma, no se rompen enlaces localizados; en su lugar, el mar de electrones simplemente se adapta a la nueva distribución de los cationes, siendo la energía de la estructura deformada similar a la original. La energía necesaria para deformar un metal como el Litio es relativamente baja, siendo, como es lógico, mucho mayor la que se necesita para deformar un metal de transición, por que este último posee muchos más electrones de valencia que son el aglutinante electrostático de los cationes.
Mediante la teoría del mar de electrones se pueden justificar de forma satisfactoria muchas propiedades de los metales, pero no es adecuada para explicar otros aspectos, como la descripción detallada de la variación de la conductividad entre los elementos metálico.
No hay comentarios:
Publicar un comentario